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Structure of the core of a screw dislocation in smectic A liquid crystals 

by HARALD PLEINERt 
Laboratoire Physique des Solides, Universitk Paris-Sud, F-9 1405 Orsay Cedex, 

France 

(Received 6 December 198.5; accepted 13 January 1986) 

The structure of the core region of a screw dislocation in smectic A liquid 
crystals is investigated by a Ginzburg-Landau type expansion of the smectic order 
parameter. The core radius and the energy of a screw dislocation are discussed. 

Smectic A liquid crystals are fluids composed of (typically) rod-shaped molecules 
showing a density modulation in one direction. They can be regarded as one- 
dimensional solids or layered structures. In equilibrium the layers are flat and their 
normal fi is constant (ao). The layer spacing do is only a very weak function of tem- 
perature and pressure and given approximately by the length of the molecules (e.g. 
30 A) [l]. 

A screw dislocation is a line defect in the layer structure characterized by [2] 

V,u  * ds = md,, = h, (1) f 
where u is the displacement of a layer along its normal fi (in equilibrium u = 0). 
Equation (1) means that while encircling the screw dislocation on a layer one ends up 
at a point which is displaced along fi by md,. The integer m is then called the strength 
of the defect and b is the absolute value of the appropriate Burgers’ vector. 

In the simplest model the screw dislocation is described as a straight line (the z axis 
in the following) with a layer structure [2]  

= be, ( 2 )  
where 6 is the angle in cylindrical coordinates (e, 0, z) and B = b/271. Equation (2) 
describes a layer structure consisting of one simply connected layer wound around the 
line defect. The layer is a minimal surface, i.e. without curvature or divfi = 0 (fi is 
related to u by fi = (P, - Vu)/  112, - Vul and is not parallel to the z axis). This simple 
model of a screw dislocation, is however, insufficient for mathematical and physical 
reasons, since u is ill-defined for e = 0 (screw line) and the elastic energy due to the 
distortion of the layers diverges (see later). These difficulties are avoided by introducing 
a core region, in which the smectic order (i.e. modulus Il/o of the smectic order parameter 

decreases from its constant value t+b0 outside the core to zero at e = 0. Thus, any 
singularity and non-physical divergence is removed. 

t Heisenberg Fellow. Present address: FB Physik, Universitat Essen, D-4300 Essen 1, F.R.  
Germany. 
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198 H. Pleiner 

It is the aim of the present paper to investigate the structure of the core by a 
continuum approach. Assuming a Ginzburg-Landau expansion to exist (and still to 
make sense within the core) the energy density is written as [3] 

(3) 
K .  
2 + 

and 
1 I - -n.n. + -(au - n,nj) 

- 2M,  ' 2M2 

The equilibrium smectic order is given by $o = a/c (a,  c positive), while (positive) 
describe the stiffness of both the order and the structure against spatial inhomogen- 
eities. The curvature energy (- K )  is related to the nematic order and not to the 
smectic order, but has been added to equation (3) for completeness. In terms of $ and 
u equation (3) reads explicitly 

and 

In a region where $ is constant equation (4) reduces to the well-known covariant 
elastic energy [4] 

with d = d0F(u)-' and A = (gz - Vu)F(u)-' and the elastic modulus B is given by 
$;47c2(dgZM,)-'. Note that u = h6 is an exact equilibrium solution of equation (5). 

In the general case where $ is not constant, minimization of JEGLdV with respect 
to $ and u leads to two coupled non-linear partial differential equations, which have 
to be solved under the conditions of equation (1) (with the path C outside the core) 
together with $(@ = 0)  = 0 and $(@ + 00) = $o. The solution of these equations 
is facilitated by assuming $ = $(& i.e. the core region has the same cylindrical 
symmetry as the original line singularity (another possibility will be discussed later). 
Then u = u(0) follows immediately, which means u = 86 everywhere. The remaining 
equation for $(e) then reads 
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Screw dislocations in a smectic A 199 

In the interior of the core, i.e. for small e(e < b), I) is expected to be very small, so 
that the cubic non-linearity can be neglected; then 

(7) 

whose appropriate solution is the Bessel function 

* = AJ,[eJ(aM2)1 (8) 

of index v = rn(M,/M,)”*.  Since I expect M ,  B MI (inhomogeneous order par- 
ameter fluctuations along the layer normal should cost more energy than in the 
transverse direction) v is a large number and I,$ N e” for e -+ 0 is a flat function of 
e. Thus the core region is rather more nematic (or isotropic) than smectic. This is even 
truer for screw dislocations with large Burger’s vectors or large defect strength m. The 
function J,[eJ(aM,)] reaches its first maximum at emax = V(UM,)-”~ = m ( a M , ) p ” 2 ,  
which serves as a characteristic length scale of this solution. 

should 
deviate only slightly from its constant value $o (obtained in a defect-free sample), i.e. 
II/ = i+b0 + A with A 4 $o. Linearizing in A gives 

In the opposite case, far away from the core, e + co, the smectic order 

A - Ko[eJ(2aM2)1, (9) 

where KO is a modified Bessel function. Since A constitutes an exponentially small 
correction only to (even for e = em,,) it can be neglected in comparison with t+bo 
for most purposes. Then the two limiting cases can be combined to give an approxi- 
mate solution $(e) for all e by 

with the core radius e, chosen as 

Thus e, increases with the defect strength and increases near the smectic-nematic 
phase transition, where a is expected to vanish with some power law (T, - T ) Y .  

Instead of choosing e, by matching the two solutions $(e) for small and large e 
at the characteristic length emax the core radius e, can be determined by a different 
procedure. Taking the solution (10) with ec as  an adjustable parameter the total 
energy of the screw dislocation E = J E ~ V  can be calculated, with 

minimizing E with respect to ec leads to e,. 
Outside the core (e > e,) the screw dislocation energy is purely elastic, since t+b0 

is constant and dive = 0 (no curvature energy). Using equation ( 5 )  the energy per 
unit length is found to be 
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200 H. Pleiner 

which reduces for Q ,  $ b to the known result [5] 

For b = e, the approximate result ( 1  3) differs from (12) only slightly (by a factor of 
5/4) and is still a reasonable approximation. For b % e, the exact result (12) shows 
that Ecj’ diverges for Q,  -+ 0 

B 
e c  

EZ = nBb21n-. 

This divergence is the physical reason for introducing a finite core radius e,. 
Inside the core ( 0  < e,) the simplest approximation is $ = 0. Then, the screw 

dislocation energy s E = ~2~ = (a2/4c) (which should be equal to the thermodynamic 
result [6] E = k,ATv;dl where vmOI is the molecular volume and AT the temperature 
difference to the nematic-smectic A transition temperature) and 

Minimizing the sum of (13) and (15) with respect to ec leads to 

ef = bm(~M,)-”~. (16) 

Equation (16) is compatible with equation (1 I), if ( a M , ) ~ ” *  is of the order of do; then 
e, % b, which is quite reasonable [7]. 

The smallness of e, is connected with the weakness of the (logarithmic) singularity 
of the elastic energy which a coreless screw dislocation would have (equation (14)). 
The relation B = r n ( ~ M , ) - ~ / ~  breaks down near the smectic A-nematic phase tran- 
sition (because do is a geometrical constant), since the crude approximation leading 
to ( I  5) then becomes invalid. 

In this treatment we have assumed cylindrical symmetry of the core region, for 
example, no z dependence of $ or u. However, a periodic z dependence is still 
compatible with the notion of an overall straight (infinite) screw dislocation. Indeed 
there is such a model with two helical singular lines spiralling around the z axis [S]. 
It  is obtained, if a parent surface (generated by a straight line which is perpendicular 
to the z axis and which rotates with pitch h % do) is enveloped by a family of surfaces 
all having constant distance from each other; for details and illustration see [5 ] .  By 
construction there is no elastic energy involved but only curvature energy. The total 
curvature energy diverges logarithmically [9] and the singular lines (the cuspidal edge 
of the focal surface connected with the family of surfaces) form a double helix of 
wedge disclinations [ 5 ] .  Again the introduction of a finite core removes singularities 
and divergences. The core region in this case is a double helical tube of radius e,. This 
core region, however, is characterized by the decrease of nematic order (not smectic 
order), since the curvature energy ( -  K )  vanishes with the nematic order. Thus, to 
obtain a quantitative picture of this core region one should use a Ginzburg-Landau 
type expansion for the nematic order parameter, which goes, however, beyond the 
scope of this paper. 

A Ginzburg-Landau type expansion has been used to investigate the core struc- 
ture. Although the results are quite reasonable, this procedure is not rigorous for the 
following reasons. Because of the smallness of the core radius any continuum descrip- 
tion of the interior of the core is debatable. An expansion in ‘P (if it exists at all) is 
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Screw dislocations in a smectic A 20 1 

believed to be correct for small Y only and is less accurate for finite Y (i.e. 
$ = $,, = constant). Instead of expanding in Y ,  $ and u could be used separately 
giving rise to additional coupling terms between the gradients of $ and u in equation 
(4) (which are, however, probably rather small). Nevertheless the results derived 
concerning core radius and screw dislocation energy are believed to be correct 
qualitatively, and it is hoped that they can be verified experimentally. 
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